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Context 
The LEM3 laboratory (Laboratoire d'Étude des Microstructures et de Mécanique des 
Matériaux: Laboratory of Study of Microstructures and Mechanics of Materials) is a joint 
research center of the Université de Lorraine, the French National Center for Scientific 
Research (CNRS), and the engineer school Arts et Métiers. LEM3 is one of the largest 
research institutes for the physics of materials and engineering in France. It is located in 
Metz, near the tripoint along the junction of France, Germany, and Luxembourg, and 
forms a central hub for science in Europe. Over 250 scientists from France and around 
the world work at LEM3 to perform world-class research in materials science, 
mechanics, and processes. By conducting both fundamental and applied research, 
researchers at LEM3 work on long-term solutions for the major challenges facing society, 
industry, and science. The PhD student will join a team of experienced dynamic 
researchers from diverse background, including Julien Guénolé (CR CNRS), Stéphane 
Berbenni (DR CNRS) and Lionel Germain (Prof. UL), with a proven track record in using 
Artificial Intelligence for material and mechanical engineering (1–5). The selected 
candidate will have access to multiple high performance computing resources provided 
by GENCI (https://www.genci.fr/), EXPLOR (https://explor.univ-lorraine.fr/), CASSIOPÉE 
(https://artsetmetiers.fr/fr/cassiopee-plateforme-hpc) and ENACT (https://cluster-ia-
enact.ai/). This PhD o`er is provided by the ENACT AI Cluster and its partners. 
Application by June 18th, 2025: https://doctorat.univ-lorraine.fr/en/node/100030373  

Summary of the PhD project 
Inorganic materials are essential across industries due to their versatile properties, and 
understanding their mechanical behavior—especially plastic deformation—has been a 
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key pursuit in materials science. However, the prediction of their mechanical response 
remains to date a challenge for state-of-the-art modelling approaches, especially for 
advanced engineering materials that contains a large proportion of interfaces (e.g. grain 
boundaries…) at various length scales. Indeed, existing models often neglect interface-
specific atomic details, severely limiting the ability to predict the mechanics of interface 
dominated materials. To address this, we envision a data-driven multiscale approach 
using local defect density fields (Nye dislocation) within an established and highly 
e`icient continuum mechanics framework (Field Dislocation Mechanics), to bridge 
atomic-scale simulation data and meso-scale continuum models. Within this broader 
context, this PhD project focuses on the machine learning (ML) generation of the 
nanostructures of interfaces and defects (dislocations), based on data from classical 
atomistic simulations.  
Atomistic simulations are ideal for modeling interfaces at atomic resolution across 
various materials, making them central to the generation of the data employed in this 
project. As we emphasize method development over material specificity, aluminum is 
chosen for its well-characterized plasticity and available interatomic potentials. The 
model could be however assessed on more complex materials, like magnesium alloys. 
Carefully designed simulation setups will control interface and dislocation features, 
enabling exploration of numerous defect configurations. This will generate the extensive 
and reliable data required to train the ML model at the heart of this project. The “G-
method” recently developed in the team (6), will bridge atomistic results to continuum 
models via Nye dislocation density tensors, and ultimately provide the data.  
The core objective of this PhD project is to enable the generation of defect density fields 
able to describe material interfaces with atomistic precision thanks to the use of 
generative ML approaches. More precisely, the prediction of Nye dislocation fields 
associated with any combination of defects, i.e. interface or/and dislocation. We intend 
to design and train a data-driven model able to handle the complexity of such 
configuration space and to generate the required fields. 
An excellent candidate for such task is the Generative Adversarial Network (GAN), which 
is a deep learning approach able to generate data already successful in generating 
microstructures (7–9). In brief, a GAN is composed of two ML models trained 
simultaneously and competing through a Nash equilibrium: the generator produces data 
representing the training dataset and the discriminator distinguished between the data 
that has been generated and the real one. Original GAN are prone to known issues (mode 
collapse, vanishing gradient…), which are however widely addressed in the literature by 
alternative architectures, such as WGAN or CycleGAN. An additional aspect specific to 
this project is that physical laws governing the generated training data are known 
(periodicity, equilibrium, etc.). By integrating them within the training dataset or the loss 
function being minimized during training, we would obtain a physics-informed ML 
approach that will facilitate the training of the GAN (10). 
The expected outcomes of this PhD project are: (i) establish a GAN architecture able to 
generate defect density fields of interfaces, and (ii) enlighten on the role of interfacial 



 
 
characteristics on the plasticity in advanced engineering materials. The deep learning 
approach developed in this PhD project will enable an unprecedented paradigm in multi-
scale material modeling and establish a foundation for physics-based interface 
engineering in crystalline materials. 

Profile and skills required 
The candidate must have: 

- Strong background in Computational science, Material Science, Mechanics, 
Physics, or equivalent. 

- Good background in statistical analysis. 
- Good knowledge and programming skills in Python. 
- Previous experience in atomistic simulations, molecular dynamics simulations or 

machine learning, including generative deeplearning technics will be considered 
as an extra merit. 

- The application should include a statement of research interest, a CV with the 
names of two people to contact for a recommendation, a list of publications and 
other relevant materials, if available. 

- Have exceptional written and verbal communication skills. 
Application by June 18th, 2025: https://doctorat.univ-lorraine.fr/en/node/100030373  
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